Addition of Integers: Counters and More

Addition of integers can be modeled using counters. We will use green counters with a " + " sign for positives and red counters with a "-" sign for negatives.
Here we have the sum 2+3.
There is a group of 2 positives

and another of 3 positives. \quad| This picture shows the sum |
| :--- |
| $(-2)+(-3)$. We add negatives |
| and negatives. In total, there are |
| five negatives, so the sum is -5. |

1. Refer to the pictures and add. Remember each "positive-negative" pair is cancelled.

2. Write addition sentences (equations) to match the pictures.
d.

A note on notation

We can write an elevated minus sign to indicate a negative number: ${ }^{-4} 4$.
Or we can write it with a minus sign and brackets: (-4).
We can even write it without the brackets if the meaning is clear: -4 .
So ${ }^{-} 4+{ }^{-} 4={ }^{-} 8$ is the same as $(-4)+(-4)=(-8)$, which is the same as $-4+(-4)=-8$.
You should write the brackets if you have + and -, or two - signs, next to each other.
So, do not write " $8+-4$ "; write " $8+(-4)$." And do not write " $3--3$ "; write " $3-(-3)$."
3. Think of the counters. Add.

$\text { a. } \begin{array}{r} 7+(-8)= \\ (-7)+8= \end{array}$	b. $\begin{aligned} & (-7)+(-8)= \\ & 7+8= \end{aligned}$	$\begin{array}{r} \text { c. } 5+(-7)= \\ 7+(-5)= \end{array}$	d. $\begin{aligned} & 50+(-20)= \\ & 10+(-40)= \end{aligned}$
$\begin{aligned} & \text { e. }-2+-4= \\ &-6+6= \end{aligned}$	$\text { f. } \begin{aligned} & 10+{ }^{-} 1= \\ &= \\ & 10+{ }^{-} 1= \end{aligned}$	$\begin{array}{r} \text { g. }-8+2= \\ -8+-2= \end{array}$	h. $\begin{aligned} & -9+{ }^{-} 1= \\ & 9+{ }^{-} 1= \end{aligned}$

Comparing number line jumps and counters

We can think of $-5+(-3)$ as five negatives and three negatives, totaling 8 negatives or -8 . We also know that $-5-3$ is like starting at -5 and jumping three steps towards the left on the number line, ending at -8 .

Since both have the same answer, the two expressions $-5+(-3)$ and $-5-3$ are equal:

$$
-5+(-3)=-5-3
$$

It is as if the " + -" in the middle is changed into a single - sign. This, indeed, is a shortcut!
Similarly, $2+(-7)$ is the same as $2-7$. Either (1) think of having 2 positive and 7 negative counters, totaling 5 negatives, (2) or think of being at 2 and taking 7 steps to the left, ending at -5 .

With integer problems, you can think of number line jumps or of counters, whichever is easier.
4. Compare how $-8+6$ is modeled on the number line and with counters.
a. On the number line, $-8+6$ is like starting at \qquad , and moving \qquad steps to the \qquad , ending at \qquad .
b. With counters, $-8+6$ is like \qquad negatives and \qquad positives added together. We can form \qquad negative-positive pairs that cancel each other out, and what is left is \qquad negatives.
5. Add. You can think of counters or number line jumps.

a. $2+(-11)=$	b. $-11+(-11)=$	c. $-2+(-9)=$	d. $21+(-7)=$
$-7+9=$	$3+(-8)=$	$16+(-5)=$	$-30+20=$

