
Square Roots

1. Find the (principal) square roots.

a. $\sqrt{100}$	b. $\sqrt{64}$	c. $\sqrt{4}$	d. $\sqrt{0}$
e. $\sqrt{81}$	f. $\sqrt{144}$	g. $\sqrt{1}$	h. $\sqrt{10,000}$

2. It is especially easy to find square roots of numbers that are perfect squares: numbers we get by squaring whole numbers. For example, 49 is a perfect square because it is 7².
Fill in the list of perfect squares from 1² to 20² at the right:

3. Find the square roots of these perfect squares.

a. $\sqrt{169}$	b. √900
c. $\sqrt{225}$	d. $\sqrt{121}$
e. $\sqrt{441}$	f. $\sqrt{8,100}$
g. $\sqrt{324}$	h. $\sqrt{400}$
i. <u>√6,400</u>	j. √25,600
k. $\sqrt{16,900}$	I. √1,000,000

x	<i>x</i> ²	x	x^2
1	1	11	
2	4	12	
3	9	13	
4		14	
		15	
			256
	49		289
8			324
9			

Most whole numbers are *not* perfect squares, and their square roots are unending decimals. (In fact, their square roots are **irrational numbers**, which means they cannot be written as a fraction, and their decimal expansions are unending decimals without any repeating patterns in the digits.)

We can handle that situation in at least three ways:

- 1. We can find an approximate value of such square roots **with a calculator**, rounding the answer to a reasonable accuracy. This is necessary if we're dealing with a real-life application.
- 2. We can find an approximate value using **guess and check**, and decimal multiplication. For example, we know that the value of $\sqrt{17}$ will be between 4 and 5 (since $\sqrt{16} = 4$ and $\sqrt{25} = 5$). We can also tell that it will be closer to 4 than 5, since 17 is very close to 16. So, we could guess that it is 4.1, square that, and based on the result, refine our guess.
- 3. We can **indicate such values using the square root symbol**, and not find a decimal approximation. For example, the side of a square with an area of 2 square units is $\sqrt{2}$ units. This is the preferred way in pure mathematics, and any time you want to convey an accurate value.
- 4. Between which two whole numbers do the following square roots lie? Do not use a calculator. Tell also which of those whole numbers the root is closer to.

a.
$$\sqrt{5}$$
 b. $\sqrt{24}$ **c.** $\sqrt{47}$ **d.** $\sqrt{83}$

5. Tell the side of the square (exact value) when its area is given. Indicate the side length using the square root symbol, if the area is not a perfect square. Note: u^2 signifies square units, and *u* signifies a unit.

a. area = $25 u^2$	b. area = 1,600 u^2	c. area = 5 u^2	d. area = $11 u^2$
side =	side =	side =	side =

6. **a.** What is the area of a square, if its side measures $\sqrt{8}$ units?

- **b.** What is the value of $(\sqrt{7})^2$?
- **c.** What is the side of a square with an area of 130 square meters? Give an exact value.

Example 1. Since
$$0.5 \cdot 0.5 = 0.25$$
, then $\sqrt{0.25} = 0.5$.
Example 2. Since $\frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$, then $\sqrt{\frac{4}{9}} = \frac{2}{3}$.

7. Find the square roots.

a.
$$\sqrt{0.16}$$
 b. $\sqrt{0.01}$
 c. $\sqrt{1.21}$

 d. $\sqrt{\frac{16}{25}}$
 e. $\sqrt{\frac{100}{9}}$
 f. $\sqrt{\frac{49}{36}}$