Using Ratios to Convert Measuring Units

1. Think of the conversion factors as equations, and transform each one into a new equation of the form " 1 = a ratio" or "a ratio = 1 ."

$1 \mathrm{ft}=0.3048 \mathrm{~m}$ \downarrow	1 ounce $=28.35 \mathrm{~g}$ \downarrow	$1 \mathrm{mi}=1,760 \mathrm{yd}$ \downarrow	$1 \mathrm{~m}=1.0936 \mathrm{yd}$ \downarrow

Sample worksheet from

We can use these ratios that equal one in converting measuring units.

How does that happen? Study the following example carefully. Mathematically speaking, we multiply the quantity we want to convert by 1 . Multiplying it by 1 does not change its value. Then, we replace that 1 with one of the ratios of measuring units that equal 1 . Next, we cross out the measuring units that cancel out. Lastly, we multiply/divide the numbers involved.

$$
\begin{gathered}
56 \mathrm{~cm}=56 \mathrm{~cm} \cdot 1=56 \mathrm{~cm} \cdot \frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}=56 \mathrm{~cm} \cdot \frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}=\frac{56 \cdot 1 \mathrm{in} .}{2.54}=22.047 \mathrm{in.} \approx 22 \mathrm{in} . \\
\begin{array}{c}
\text { Multiply the } \\
\text { quantity by } 1 .
\end{array} \begin{array}{c}
\text { Replace that } 1 \\
\text { with a ratio. }
\end{array} \quad \begin{array}{c}
\text { Cancel out the } \\
\mathrm{cm} \text { units. }
\end{array}
\end{gathered} \quad \text { Calculate. } \quad \text { Round. } \quad . \quad . \quad .
$$

Notice that we keep the the units of measure in the calculation! The "cm" units cancel out, and we end up with only the unit "in" (which is what we wanted: to convert the given quantity into inches).

Another example, of converting 8.9 quarts into liters:

$$
\begin{aligned}
8.9 \mathrm{qt}= & 8.9 \mathrm{qt} \cdot 1
\end{aligned}=8.9 \mathrm{qt} \cdot \frac{0.946 \mathrm{~L}}{1 \mathrm{qt}}=8.9 \mathrm{dt} \cdot \frac{0.946 \mathrm{~L}}{1 \mathrm{dt}}=\frac{8.9 \cdot 0.946 \mathrm{~L}}{1}=8.4194 \mathrm{~L} \approx 8.4 \mathrm{~L} .
$$

2. Use the given ratios to convert the measuring units.
a. Use $1=\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}$ to convert 79 in . to centimeters.

79 in. $=$
b. Use $1=\frac{1 \mathrm{mi}}{1.6093 \mathrm{~km}}$ to convert 56 km to miles.
$56 \mathrm{~km}=$
c. Use $1=\frac{1.6093 \mathrm{~km}}{1 \mathrm{mi}}$ to convert 2.8 mi to kilometers.
$2.8 \mathrm{mi}=$
d. Use $1=\frac{0.946 \mathrm{~L}}{1 \mathrm{qt}}$ to convert 4 qt to liters.
$4 \mathrm{qt}=$

How do you know whether to use the ratio $\frac{1 \mathrm{in} \text {. }}{2.54 \mathrm{~cm}}$ or the ratio $\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} \text {. }}$ when converting 7 inches into centimeters?

If the quantity you start with has inches, then you will need to cancel out the unit "inches" in the conversion. Therefore, choose the ratio that has inches in the denominator.

Here is an example of using the wrong ratio:
$7 \mathrm{in} .=7 \mathrm{in} .1=7 \mathrm{in} \cdot \frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}=7 \mathrm{in} \cdot \frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}=\frac{7 \mathrm{in} \cdot 1 \mathrm{in} .}{2.54 \mathrm{~cm}}=\quad 2.7559 \mathrm{in} .^{2} / \mathrm{cm}$
The answer is not reasonable. Since

Replace 1 with a ratio.

Calculate. inches are the longer units, 7 inches should convert to a bigger number of cm . The units didn't work out, either.

Here are some conversion factors you will need in the following problems.
1 inch $=2.54 \mathrm{~cm}$
1 yard $=0.9144 \mathrm{~m}$
1 quart $=0.946 \mathrm{~L}$
$1 \mathrm{lb}=0.454 \mathrm{~kg}$
1 foot $=0.3048 \mathrm{~m}$
$1 \mathrm{mile}=1.6093 \mathrm{~km}$
1 ounce $=28.35 \mathrm{~g}$
$1 \mathrm{~kg}=2.2 \mathrm{lb}$
3. Use ratios to convert the measuring units.
a. 89 cm into inches
b. 15 kg into pounds
c. 78 miles into km
d. 89 feet into meters
e. 365 g into ounces

Chaining (optional). We can use TWO (or more) ratios in the conversion, and "chain" them together.
Example. Convert 0.9 liters into liquid ounces.
We have TWO conversion factors: 1 quart $=0.946 \mathrm{~L}$ and 1 quart $=32 \mathrm{oz}$. From these, we can write four ratios: $\frac{1 \mathrm{qt}}{0.946 \mathrm{~L}}, \frac{0.946 \mathrm{~L}}{1 \mathrm{qt}}, \frac{32 \mathrm{oz}}{1 \mathrm{qt}}$, and $\frac{32 \mathrm{oz}}{1 \mathrm{qt}}$, all equaling 1 . We can use TWO of those four, "chaining" them together, to go from 0.9 liters to however many ounces:

How do you choose which two of the possible four ratios to use? Since you start out with LITERS, you want a ratio where LITERS are in the denominator. And since you want to end up with OUNCES, you want a ratio where OUNCES are NOT in the denominator. The quarts and liters cancel out in the process, leaving the ounces.
4. Convert the measuring units as indicated.
a. Use the ratios ($2.54 \mathrm{~cm} / 1 \mathrm{in}$.) and ($12 \mathrm{in} . / 1 \mathrm{ft}$) to convert 5 ft into centimeters.
$5 \mathrm{ft}=$
b. Use the ratios ($1 \mathrm{qt} / 32 \mathrm{oz}$) and ($0.946 \mathrm{~L} / 1 \mathrm{qt}$) to convert 24 oz into liters.
c. Convert 700 yards into meters.
d. Convert 8 kg into ounces (weight).
e. Convert 371 ounces into grams.
f. Convert 15 pints into liters.

