Scaling Figures

Two figures are similar if they have the same shape. Similar figures may be of different sizes. For example, all circles are similar, and so are all squares.

Example 1. The quadrilaterals A and A' (read: "A prime") at the right are similar: they have the same basic shape, but one is larger.

Compare the corresponding sides: a to a^{\prime} and b to b^{\prime}. In the case of polygons, similarity means that corresponding sides are proportional (in the same ratio) and corresponding angles are equal.

So the ratio $a: a^{\prime}$ is equal to the ratio $b: b^{\prime}$. This ratio is called the similarity ratio.
Example 2. The similarity ratio between the two rectangles is $2: 7$. Find the length of the side marked x.

Solution 1. The lengths of the corresponding sides are in the ratio of 2:7. The unknown length of the side x corresponds to the 2 parts of the ratio and the known

3.5 m side corresponds to the 7 parts. So each part is

$$
\begin{aligned}
\frac{x}{3.5 \mathrm{~m}} & =\frac{2}{7} \\
7 x & =2 \cdot 3.5 \mathrm{~m} \\
7 x & =7 \mathrm{~m} \\
x & =1 \mathrm{~m}
\end{aligned}
$$

1. The figures are similar. Find the length of the side labeled x.

a. Similarity ratio 3:5.

b. Similarity ratio 7:3.
