Place Value

The letters "h to" stand for hundreds, tens, ones.

Read this number as:
"Two hundred nine trillion, three hundred fifty-six billion, seventy-five million, eight hundred fifty-five thousand, four hundred and two."

To write this number in its expanded form, take each digit's value, and write them all as a sum:
200,000,000,000,000 + 9,000,000,000,000 + 300,000,000,000 + 50,000,000,000 + 6,000,000,000
$+70,000,000+5,000,000+800,000+50,000+5,000+400+2$
This is easier to write using exponents:
$2 \times 10^{14}+9 \times 10^{12}+3 \times 10^{11}+5 \times 10^{10}+6 \times 10^{9}$
$+7 \times 10^{7}+5 \times 10^{6}+8 \times 10^{5}+5 \times 10^{4}+5 \times 10^{3}+4 \times 10^{2}+2 \times 10^{0}$
Remember that in powers of 10 , the exponent tells you how many zeros are in the number.
For example, $10^{11}=100,000,000,000$ has eleven zeros.
Notice especially: $\mathbf{1 0}^{\mathbf{0}}=\mathbf{1}$ (the number 1 has no zeros!).

The number system we use is based on place value. This means that a digit's value depends on its position or place within the number.
Our number system is called a decimal, or base-ten, system (from the Latin word decima, a tenth part). The value of each position or place is one-tenth of the value of the previous place.

h	t	o	h	t	o	h	t	o	h	t	o	h	t	o
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{8}$

trillions period	billions period	millions period	thousands period	ones period

The digit " 6 " is in the hundred billions place.
Its value is $6 \times$ a hundred billion, or 600 billion.
The digit " 5 " is in the ten millions place. Its value is $5 \times$ ten million, or 50 million.

1. Write the numbers in the place value chart. Answer the questions.

a. 89 million, 2 thousand, 4 hundred What is the value of the digit " 9 "?					
	trillions period	billions period	millions period	thousands period	ones period
b. 142 billion, 2 million, 139 thousand What is the value of the digit " 3 "?					
		billions period	millions period	thousands period	ones period
c. 5 trillion, 47 million, 260 What is the value of the digit " 4 "?					
		billions period	millions period	thousands period	ones period

2. What is the place and the value of the digit 8 in the following numbers?

a. 56,809 the hundreds place	b. 287,403,222	c. $18,503,200,000,000$	d. 8,493,591,000
value \quad800	value	value	-

3. Write as numbers.
a. 2 billion, 180 million, 27 thousand
b. 60 trillion, 453 thousand
c. 4 trillion, 50 billion, 54 million, 9
4. Write the numbers and their names corresponding to the powers of ten. Notice especially that $\mathbf{1 0}^{\mathbf{0}}=\mathbf{1}$.

10^{0}	1	one
10^{1}	10	ten
10^{2}	1,000	
10^{3}		one thousand
10^{4}		
10^{5}		ten million
10^{6}		
10^{7}		
10^{8}		
10^{9}		
10^{10}		
10^{11}		
10^{12}		

5. Write as a single number.

a. $8 \times 10^{4}+5 \times 10^{2}+7 \times 10^{0}$	b. $7 \times 10^{6}+5 \times 10^{4}+6 \times 10^{3}+6 \times 10^{1}$
c. $7 \times 10^{9}+1 \times 10^{8}+7 \times 10^{7}$	d. $6 \times 10^{8}+4 \times 10^{6}+5 \times 10^{5}+1 \times 10^{4}+2 \times 10^{3}$
e. $2 \times 10^{9}+3 \times 10^{8}+5 \times 10^{6}+8 \times 10^{5}+7 \times 10^{4}$	f. $6 \times 10^{4}+2 \times 10^{7}+1 \times 10^{5}+2 \times 10^{0}$

