## **Exponents and Powers**

An exponent is used to signify repeated multiplication. For example, the expression  $5^6$  ("five to the sixth power") simply means we multiply number 5 by itself, repeatedly, six times:

 $\mathbf{5^6} = 5 \times 5 \times 5 \times 5 \times 5 \times 5$ 

The number 5 is called the **base**. It tells us what number we are multiplying repeatedly. The little raised number is the **exponent**, and it tells us how many times the number is repeatedly multiplied.

**Example 1.**  $2^4$  means  $2 \times 2 \times 2 \times 2$ . It is read as "two to the fourth power." Its value is 16.

**Example 2.**  $9^2$  means  $9 \times 9$  and is commonly read as "nine squared" (think of the area of a square with side length 9). Similarly,  $11^2$  is read as "eleven squared". (What is its value?)

**Example 3.**  $4^3$  means  $4 \times 4 \times 4$  and is commonly read as "four cubed" (because of the volume of a cube with edges 4 units). Similarly,  $10^3$  is read as "ten cubed". (What is its value?)

1. Write using exponents, and solve.



2. Multiplication is repeated addition, and a power is repeated multiplication. Compare.



3. Read the powers aloud. Then find their values.

| <b>a.</b> $5^2 =$ | <b>c.</b> $3^3 =$ | <b>e.</b> $1^6 =$ |
|-------------------|-------------------|-------------------|
| <b>b.</b> $2^3 =$ | <b>d.</b> $7^2 =$ | <b>f.</b> $0^7 =$ |

**Powers of ten** are expressions where the number **10 is multiplied by itself.** For example, 100 is a power of ten because it is  $10 \times 10$  or  $10^2$ . Or, 100,000 is a power of ten because it is 10 multiplied by itself, five times ( $10^5$ ).

4. Write these powers of ten as normal numbers. Notice there is a shortcut and a pattern!

| <b>a.</b> $10^2 =$                                                                                   | <b>d.</b> $10^5 =$ |  |
|------------------------------------------------------------------------------------------------------|--------------------|--|
| <b>b.</b> $10^3 =$                                                                                   | <b>e.</b> $10^6 =$ |  |
| <b>c.</b> $10^4 =$                                                                                   | <b>f.</b> $10^7 =$ |  |
| <b>SHORTCUT:</b> In a power of ten, the exponent tells us how many the number has after the digit 1. |                    |  |

**Example 4.** Let's say a child asked you how much in total is five \$100-bills. You would think that's easy— the total is five hundred dollars! In symbols,  $5 \times 10^2 = 500$ .

Similarly, seven copies of (or seven times) one million equals seven million. In symbols,  $7 \times 1,000,000 = 7,000,000$  or  $7 \times 10^6 = 7,000,000$ .

5. Fill in.

| <b>a.</b> nine copies of a hundred thousand |                             | <b>b.</b> eight copies of ten thousand |                             |
|---------------------------------------------|-----------------------------|----------------------------------------|-----------------------------|
| ×=                                          |                             | ×                                      | =                           |
| <b>c.</b> $5 \times 10^4 =$                 | <b>d.</b> $7 \times 10^6 =$ |                                        | <b>e.</b> $3 \times 10^8 =$ |

6. Study the patterns in these powers of ten, and fill in the missing parts.



7. Multiply a number times a power of ten. Compare the problems in each box.

| <b>a.</b> $5 \times 100 =$  | <b>b.</b> $6 \times 10^3 =$ |                             | <b>c.</b> $3 \times 10^4 =$ |   |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---|
| 16 × 100 =                  | $23 \times 10^3 =$          |                             | $89 \times 10^4 =$          |   |
| <b>d.</b> $9 \times 10^5 =$ |                             | <b>e.</b> $3 \times 10^7 =$ |                             | - |
| $19 \times 10^5 =$          |                             | $32 \times 10^7 =$          |                             | - |

8. Luke says that  $10^7$  is three times as big as  $10^4$ . Is he correct?

Explain why or why not.

## 9. Find the missing exponent or the entire power of ten.

| <b>a.</b> $6 \times 10^{} = 6,000$ | <b>b.</b> $3 \times 10^{-1} = 300,000$ | <b>c.</b> $56 \times$ = 560,000 |
|------------------------------------|----------------------------------------|---------------------------------|
| 71 × 10 = 71,000,000               | $9 \times 10^{} = 90,000,000$          | 295 × 2950,000,000              |

10. Astronomy involves some really big numbers. Write these numbers in the normal manner.

Pluto's surface area is about  $17 \times 10^6 \text{ km}^2$ .

The sun's average distance from Earth is  $15 \times 10^7$  km.

Haumea is a dwarf planet located beyond Neptune's orbit. The mass of Haumea is about  $4 \times 10^{21}$  kg.

