Exponents and Powers

An exponent is used to signify repeated multiplication. For example, the expression $\mathbf{5}^{6}$ ("five to the sixth power") simply means we multiply number 5 by itself, repeatedly, six times:

$$
5^{6}=5 \times 5 \times 5 \times 5 \times 5 \times 5
$$

The number 5 is called the base. It tells us what number we are multiplying repeatedly. The little raised number is the exponent, and it tells us how many times the number is repeatedly multiplied.

Example 1. 2^{4} means $2 \times 2 \times 2 \times 2$. It is read as "two to the fourth power." Its value is 16 .
Example 2. 9^{2} means 9×9 and is commonly read as "nine squared" (think of the area of a square with side length 9). Similarly, 11^{2} is read as "eleven squared". (What is its value?)

Example 3. 4^{3} means $4 \times 4 \times 4$ and is commonly read as "four cubed" (because of the volume of a cube with edges 4 units). Similarly, 10^{3} is read as "ten cubed". (What is its value?)

1. Write using exponents, and solve.

2. Multiplication is repeated addition, and a power is repeated multiplication. Compare.
a. $2+2+2+2=4 \times 2=$ \qquad b. $5+5+5=$ \qquad $\times \ldots=$ \qquad $2 \times 2 \times 2 \times 2=\square=$
3. Read the powers aloud. Then find their values.
a. $5^{2}=$
b. $2^{3}=$
c. $3^{3}=$
d. $7^{2}=$
e. $1^{6}=$
f. $0^{7}=$

Powers of ten are expressions where the number $\mathbf{1 0}$ is multiplied by itself. For example, 100 is a power of ten because it is 10×10 or 10^{2}. Or, 100,000 is a power of ten because it is 10 multiplied by itself, five times $\left(10^{5}\right)$.
4. Write these powers of ten as normal numbers. Notice there is a shortcut and a pattern!
a. $10^{2}=$ \qquad
b. $10^{3}=$ \qquad
c. $10^{4}=$ \qquad
SHORTCUT: In a power of ten, the exponent tells us how many \qquad the number has after the digit 1.

Example 4. Let's say a child asked you how much in total is five $\$ 100$-bills. You would think that's easy- the total is five hundred dollars! In symbols, $5 \times 10^{2}=500$. Similarly, seven copies of (or seven times) one million equals seven million. In symbols, $7 \times 1,000,000=7,000,000$ or $7 \times 10^{6}=7,000,000$.
5. Fill in.

a. nine copies of a hundred thousand\qquad $=$		b. eight copies of ten thousand \times \qquad $=$ \qquad	
c. $5 \times 10^{4}=$	d. $7 \times 10^{6}=$		e. $3 \times 10^{8}=$

6. Study the patterns in these powers of ten, and fill in the missing parts.

$\begin{aligned} & \text { a. } 10 \times 10^{2}=\underline{1,000} \\ & 10 \times 10 \times 10^{2}= \\ & 10 \times 10 \times 10 \times 10^{2}= \end{aligned}$	$\text { b. } \begin{aligned} 10 \times 10^{3}= & =10 \\ 100 \times 10^{3}= & =10 \\ 1,000 \times 10^{3}= & =10 \end{aligned}$
c. \qquad $\times 10^{3}=100,000$ \qquad $\times 10^{4}=100,000$ \qquad $\times 10^{4}=1,000,000$	d. \qquad $\times 10^{5}=1,000,000$ \qquad $\times 10^{5}=100,000,000$ \qquad $\times 10^{3}=10,000,000$

7. Multiply a number times a power of ten. Compare the problems in each box.

8. Luke says that 10^{7} is three times as big as 10^{4}. Is he correct?

Explain why or why not.
9. Find the missing exponent or the entire power of ten.

a. $6 \times 10=6,000$	b. $3 \times 10=300,000$	c. $56 \times \square=560,000$
$71 \times 10=71,000,000$	$9 \times 10=90,000,000$	$295 \times \square=2,950,000,000$

10. Astronomy involves some really big numbers. Write these numbers in the normal manner.

Pluto's surface area is about $17 \times 10^{6} \mathrm{~km}^{2}$.
The sun's average distance from Earth is $15 \times 10^{7} \mathrm{~km}$.
Haumea is a dwarf planet located beyond Neptune's orbit.
The mass of Haumea is about $4 \times 10^{21} \mathrm{~kg}$.

Some challenges. Can you find a shortcut?

Puzzle Corner

a. $10^{3} \times 10^{2}=$ \qquad b. $5 \times 10^{2} \times 10^{4}=$ \qquad
c. $10^{5} \times 10^{3}=$ \qquad
d. $8 \times 10^{4} \times 2 \times 10^{3}=$ \qquad
e. $10^{6} \times 10^{2} \times 10^{2}=10$
f. $10^{3} \times 10^{5} \times 10^{2} \times 10^{4}=10$

