Graphing

Do you remember equations with two variables? When an equation has two variables (like the equation $y=2 x-3$), it usually has an infinite number of solutions. In other words, there is an infinite number of values for x and y that make the equation true.
For example, if $x=0$, then we can calculate the value of y using the equation: $y=2 \cdot 0-3=-3$. So when $x=0$ and $y=-3$, the equation is true. The number pair $(x, y)=(0,-3)$ is a solution.

Similarly, if x is 3 , then $y=2 \cdot 3-3=3$. The number pair $(3,3)$ is also a solution.

In this way we could generate an infinite number of solutions. Each solution is a number pair that can be plotted on a coordinate grid.

This table lists some x and y values, plotted at the right, for the equation $y=2 x-3$:

x	-2	-1	0	1	2	3	4	5
y	-7	-5	-3	-1	1	3	5	7

Notice the pattern in the table and in the graph: as the x-values increase by 1 , the y-values increase by 2 . The plot shows a pattern, as well: the dots form a line that is rising upwards.

1. Plot the points from the equations for the values of x listed in the table. Graph both (a) and (b) in the same grid.
a. $y=x+4$

x	-9	-8	-7	-6	-5	-4	-3	-2
y								

x	-1	0	1	2	3	4	5
y							

b. $y=2 x-1$

x	-3	-2	-1	0	1	2	3	4	5
y									

2. Which equation matches the plot on the right?

$$
\begin{aligned}
& y=(1 / 2) x+1 \\
& y=(1 / 2) x \\
& y=(1 / 2) x-1
\end{aligned}
$$

Sample worksheet from

