Equations with Fractions 2

Example 1. Also in this situation, it makes sense to start by multiplying out the denominators. We use 12 since it is a common multiple of both 3 and 4.	$\frac{x+5}{3} = \frac{2x-1}{4}$	• 12
Notice how things simplify in the next step.	$\aleph \cdot \left(\frac{x+5}{3}\right) = \aleph \cdot \left(\frac{2x-1}{3}\right)$	(Simplify.)
Checking the solution, we get:	4(x+5) = 3(2x-1)	
$\frac{11.5+5}{3} \stackrel{?}{=} \frac{2(11.5)-1}{4}$	4x+20 = 6x-3	-6x -20
$\frac{16.5}{3} \stackrel{?}{=} \frac{23-1}{4}$	-2x + 20 = -3	- 20 ÷ 2
5.5 = 22/4	-2x = -23 $x = 11\frac{1}{2}$. → 2

1. Solve. Can you think of two different ways to start the solution? *Hint:* Again it will be handy to check the solutions with a calculator using a decimal approximation of the root.

a. $\frac{3x-4}{2} = \frac{3x+1}{5}$ b. $\frac{15-2}{8}$	$\frac{s}{2} = \frac{5s-1}{2}$

2. What errors are made in these solutions? Correct them, and continue the solutions.

.

a.
$$\frac{3x-4}{2} - 5 = 7$$

 $3x-4-5 = 14$
b. $3-x = 2x + \frac{x-10}{2}$
 $30-x = 2x+5x-50$
10

3. Solve. What is different about the two equations (a), and (b)? How does that affect the solution process?

a.	$2x + \frac{5-x}{6} = 4$	b.	$2x - \frac{5-x}{6} = 4$

4. Practice some more!

a. $\frac{3x-8}{10} - 1 = x$	b. $11 = 3y + \frac{5-5y}{3}$
c. $0 = \frac{3x-2}{4} + \frac{x+2}{5}$	d. $-x + \frac{1-3x}{2} = \frac{x}{3} + 2$

5. Solve equations involving decimals, also. Hint: In (c), you can cross-multiply. Use a calculator. Give your final answer rounded to two decimals.

a.	$\frac{3.2x - 1}{5} = 0.9x$	b.	$0.08x - \frac{0.1x}{4} = 0.2$
c.	$\frac{20x - 4.3}{0.4} = \frac{3.89x}{2.5}$	d.	$5.4 - \frac{0.3 - x}{4} = \frac{x}{2}$

6. Check what happens if you start the solution of this equation by multiplying both sides by <u>5</u> (not by 10).

$$\frac{3}{5}(x+\frac{1}{2}) = -3$$

Andrea put forth a puzzle: "The sides of my rectangle are consecutive whole numbers, and the area is between 3,200 and 3,400 square units." What are the sides of Andrea's rectangle?