Equations with Fractions 2

Example 1. Also in this situation, it makes sense to start by multiplying out the denominators. We use 12 since it is a common multiple of both 3 and 4 .

Notice how things simplify in the next step.
Checking the solution, we get:

$$
\begin{array}{ccc}
\frac{11.5+5}{3} & \stackrel{?}{=} & \frac{2(11.5)-1}{4} \\
\frac{16.5}{3} & \stackrel{?}{=} & \frac{23-1}{4} \\
5.5 & = & 22 / 4
\end{array}
$$

$$
\begin{array}{rl|l}
\frac{x+5}{3} & =\frac{2 x-1}{4} & \\
12 \cdot\left(\frac{x+5}{3}\right) & =12 \cdot\left(\frac{2 x-1}{4}\right) & \\
\text { (Simplify.) } \\
4(x+5) & =3(2 x-1) & \\
4 x+20 & =6 x-3 & \\
-2 x+20 & =-3 & -\mathbf{6 x} \\
-2 x & =-23 & \\
x & =111 / 2 &
\end{array}
$$

1. Solve. Can you think of two different ways to start the solution? Hint: Again it will be handy to check the solutions with a calculator using a decimal approximation of the root.

a. $\quad \frac{3 x-4}{2}=\frac{3 x+1}{5}$	$\frac{15-2 s}{8}=\frac{5 s-1}{2}$

2. What errors are made in these solutions? Correct them, and continue the solutions.
a. $\frac{3 x-4}{2}-5=7$

$$
3 x-4-5=14
$$

b. $\left.\quad 3-x=2 x+\frac{x-10}{2} \quad \right\rvert\, \cdot \mathbf{1 0}$
$30-x=2 x+5 x-50$
3. Solve. What is different about the two equations (a), and (b)? How does that affect the solution process?
a. $2 x+\frac{5-x}{6}=4$
4. Practice some more!

5. Solve equations involving decimals, also. Hint: In (c), you can cross-multiply. Use a calculator. Give your final answer rounded to two decimals.

| a. $\quad \frac{3.2 x-1}{5}=0.9 x$ | b. $\quad 0.08 x-\frac{0.1 x}{4}=0.2$ |
| :--- | :--- | :--- |
| $\frac{20 x-4.3}{0.4}=\frac{3.89 x}{2.5}$ | d. |
| c. | |

6. Check what happens if you start the solution of this equation by multiplying both sides by $\underline{5}$ (not by 10).

$$
\frac{3}{5}\left(x+\frac{1}{2}\right)=-3
$$

$$
=
$$

Andrea put forth a puzzle: "The sides of my rectangle are consecutive whole numbers, and the area is between 3,200 and 3,400 square units." What are the sides of Andrea's rectangle?

