Equations Review, Part 3

If an equation involves fractions, it is often easier to solve it if you first get rid of them. We do that by multiplying both sides of the equation by the denominator of the fraction (or by the LCM of the denominators). This is not absolutely necessary as a starting point, but it does make things much easier.

Example 1. $\begin{array}{rlrl} \frac{3}{4} a+4 & =6 & & \\ 4\left(\frac{3}{4} a+4\right) & =4 \cdot 6 \\ 3 a+16 & =24 \\ 3 a & =8 & \mid-\mathbf{1 6} \\ a & =8 / 3=\mathbf{2} \mathbf{2} / \mathbf{3} \end{array}$	Check: $\begin{aligned} \frac{3}{4} \cdot \frac{8}{3}+4 & \stackrel{?}{=} 6 \\ \frac{8}{4}+4 & \stackrel{?}{=} 6 \\ 6 & =6 \end{aligned}$
Example 2. $\left.\left.\begin{array}{rl} -\frac{2}{5}(x+7) & =-6 \end{array} \right\rvert\, \cdot \mathbf{5}, ~ \mathrm{Ne}\right)$	Check: $\begin{aligned} -\frac{2}{5}(8+7) & \stackrel{?}{=}-6 \\ -\frac{2}{5}(15) & \stackrel{?}{=}-6 \\ -6 & =-6 \end{aligned}$

1. Find the errors in these solutions, and correct them.
a.

$$
\begin{array}{rl|l}
\frac{3}{8} y-7 & =2 & \cdot 8 \\
3 y-7 & =16 & +7 \\
3 y & =23 & \div 3 \\
y & =23 / 3=72 / 3 &
\end{array}
$$

b.

$$
\begin{array}{rl|l}
4(y+2) & =\frac{13}{5} & \cdot \mathbf{5} \\
4 y+8 & =13 & -\mathbf{8} \\
4 y & =5 & \div 4 \\
y & =5 / 4=11 / 4
\end{array}
$$

2. Solve the equations. Compare the three and how they are solved.

a. $\frac{1}{5} a+7=3$	b. $\frac{1}{5}(a+7)=3$	c. $-\frac{2}{5}(a+7)=3$

3. Practice some more. Solve the equations.

a. $2=-\frac{9}{10}(4-x)$	b. $2(1-x)=\frac{5}{12}$	c. $2 y-5=-\frac{4}{7}$

4. Solve equations involving decimals, also. Use a calculator. Give your final answer rounded to two decimals.

a. $0.4(x+5)=-3.7$	b. $4.72 w-8.9=20$	c. $98.5=-3(y+25.6)$

Example 3. Here, the fraction is in a different spot in the equation. Multiplying by the denominator still works.

However, you could also start the solution process by applying the distributive property on the left side.

$$
\begin{array}{rl|l}
2\left(x+\frac{4}{5}\right) & =-7 & \\
5 \cdot 2\left(x+\frac{4}{5}\right) & =-35 & \\
10\left(x+\frac{4}{5}\right) & =-35 & \\
10 x+8 & =-35 & -\mathbf{8} \\
10 x & =-43 & \div 3 \\
x & =-\frac{43}{10}=-4 \frac{3}{10} &
\end{array}
$$

5. Solve the equation from example 4 again, this time starting the solution by applying the distributive property on the left side.

Hint: don't convert improper fractions to mixed numbers during the solution process. It is easier to calculate with fractions than with mixed numbers.

$$
2\left(x+\frac{4}{5}\right)=-7
$$

6. Solve. Compare the three and how they are solved. Again, keep any improper fractions during the process.
a. $-3\left(x+\frac{1}{6}\right)=1$
b. $-3 x+\frac{1}{6}=1$
c. $-3 x+1=-\frac{1}{6}$
7. Fill in the missing parts - either what is to be done in the next step, or the missing numbers.

$$
\begin{aligned}
2 y-7 & =\frac{5}{9} \\
9 \cdot(2 y-7) & = \\
18 y-\square & = \\
18 y & =68 \\
y & =
\end{aligned}
$$

8. a. Verify that $x=-4 / 3$ is not a root of this equation.
b. Find the mistake in the solution, and correct it.

$$
\begin{aligned}
6\left(x-\frac{2}{3}\right) & =-2 \\
6 x-\frac{12}{3} & =-12 \\
6 x-4 & =-12 \\
6 x & =-8 \\
x & =-8 / 6=-4 / 3
\end{aligned}
$$

9. Here's a riddle to discover by solving the equations. Use blank paper if needed.

| T $3\left(x+\frac{2}{9}\right)=-3$ | $\mathbf{R} \quad 2=\frac{1}{8}(7-x)$ | $\mathbf{A}-3 x+6=\frac{3}{5}$ |
| :--- | :--- | :--- | :--- |
| H \quad 0.2 $(6-s)=50$ | E $1.5=3(-\mathrm{T}+0.7)$ | $\mathbf{W} 40-0.9 x=35.5$ |

