Dividing Fractions: Reciprocal Numbers

One interpretation of division is measurement division, where we think: How many times does one number go into another? For example, to solve how many times 11 fits into 189 , we divide $187 \div 11=17$. (The other interpretation is equal sharing; we will come to that later.)

Let's apply that to fractions. How many times does go into
We can solve this just by looking at the pictures: three times. We can write the division: $2 \div \frac{2}{3}=3$.
To check the division, we multiply: $3 \cdot \frac{2}{3}=\frac{6}{3}=2$. Since we got the original dividend, it checks.

We can use measurement division to check whether an answer to a division is reasonable.

For example, if I told you that $7 \div 1 \frac{2}{3}$ equals $14 \frac{1}{3}$, you can immediately see it doesn't make sense:
$12 / 3$ surely does not fit into 7 that many times. Maybe three to four times, but not 14 !
You could also multiply to see that: 14-and-something times 1-and-something is way more than 14, and closer to 28 than to 14 , instead of 7 .

1. Find the answers that are unreasonable without actually dividing.
a. $\frac{4}{5} \div 6=\frac{2}{15}$
b. $2 \frac{3}{4} \div \frac{1}{4}=\frac{7}{12}$
c. $\frac{7}{9} \div 2=\frac{7}{18}$
d. $8 \div 2 \frac{1}{3}=18 \frac{1}{3}$
e. $5 \frac{1}{4} \div 6 \frac{1}{2}=3 \frac{1}{8}$
2. Solve with the help of the visual model, checking how many times the given fraction fits into the other number. Then write a division. Lastly, write a multiplication that checks your division.

a. How many times does \square go into $2 \div \frac{3}{4}=$ Check: \qquad . $\frac{3}{4}=$	b. How many times does θ go into \square \square \square $=$ Check:
c. How many times does Δ go into $3 \div \square=$ Check:	d. How many times does \square go into \square ? \square \square $=$ Check:

