Dividing Fractions: Reciprocal Numbers

One interpretation of division is **measurement division**, where we think: *How many times does one number go into another*? For example, to solve how many times 11 fits into 189, we divide $187 \div 11 = 17$. (The other interpretation is equal sharing; we will come to that later.) Let's apply that to fractions. How many times does \bigcirc go into \bigcirc ? We can solve this just by looking at the pictures: three times. We can write the division: $2 \div \frac{2}{3} = 3$. To check the division, we multiply: $3 \cdot \frac{2}{3} = \frac{6}{3} = 2$. Since we got the original dividend, it checks. **We can use measurement division to check whether an answer to a division is reasonable**. For example, if I told you that $7 \div 1\frac{2}{3}$ equals $14\frac{1}{3}$, you can immediately see it doesn't make sense: 12/3 surely does not fit into 7 that many times. Maybe three to four times, but not 14! You could also multiply to see that: 14-*and-something* times 1-*and-something* is way more than 14, and closer to 28 than to 14, instead of 7.

1. Find the answers that are unreasonable without actually dividing.

a.
$$\frac{4}{5} \div 6 = \frac{2}{15}$$
 b. $2\frac{3}{4} \div \frac{1}{4} = \frac{7}{12}$ **c.** $\frac{7}{9} \div 2 = \frac{7}{18}$ **d.** $8 \div 2\frac{1}{3} = 18\frac{1}{3}$ **e.** $5\frac{1}{4} \div 6\frac{1}{2} = 3\frac{1}{8}$

2. Solve with the help of the visual model, checking how many times the given fraction fits into the other number. Then write a division. Lastly, write a multiplication that checks your division.

Sample worksheet from www.mathmammoth.com