The Sieve of Eratosthenes and Prime Factorization

Remember? A number is a **prime** if it has no other factors besides 1 and itself.

For example, 13 is a prime, since the only way to write it as a multiplication is $1 \cdot 13$. In other words, 1 and 13 are its only factors.

And, 15 is not a prime, since we can write it as $3 \cdot 5$. In other words, 15 has other factors besides 1 and 15, namely 3 and 5.

To find all the prime numbers less than 100 we can use the *sieve of Eratosthenes*.

Here is an online interactive version: https://www.mathmammoth.com/practice/sieve-of-eratosthenes

- 1. Cross out 1, as it is not considered a prime.
- 2. Cross out all the even numbers except 2.
- 3. Cross out all the multiples of 3 except 3.
- 4. You do not have to check multiples of 4. Why?
- 5. Cross out all the multiples of 5 except 5.
- 6. You do not have to check multiples of 6. Why?
- 7. Cross out all the multiples of 7 except 7.
- 8. You do not have to check multiples of 8 or 9 or 10.
- 9. The numbers left are primes.

List the primes between 0 and 100 below:

2, 3, 5, 7, ___

Why do you not have to check numbers that are bigger than 10? Let's think about multiples of 11. The following multiples of 11 have already been crossed out: $2 \cdot 11, 3 \cdot 11, 4 \cdot 11, 5 \cdot 11, 6 \cdot 11, 7 \cdot 11, 8 \cdot 11$ and $9 \cdot 11$. The multiples of 11 that have not been crossed out are $10 \cdot 11$ and onward... but they are not on our chart! Similarly, the multiples of 13 that are less than 100 are $2 \cdot 13, 3 \cdot 13, ..., 7 \cdot 13$, and all of those have already been crossed out when you crossed out multiples of 2, 3, 5 and 7.

1. You learned this in grades 4 and 5... find all the factors of the given numbers. Use the checklist to help you keep track of which factors you have tested.

a. 54	b. 60
Check 1 2 3 4 5 6 7 8 9 10	Check 1 2 3 4 5 6 7 8 9 10
factors:	factors:
c. 84	d. 97
Check 1 2 3 4 5 6 7 8 9 10	Check 1 2 3 4 5 6 7 8 9 10

\times	2	3	imes	5	\times	7	\times	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

2. Find the prime factorization of these composite numbers. Use a notebook for long divisions. Give each factorization below the factor tree.

