The Sieve of Eratosthenes and Prime Factorization

Remember? A number is a prime if it has no other factors besides 1 and itself.
For example, 13 is a prime, since the only way to write it as a multiplication is $1 \cdot 13$. In other words, 1 and 13 are its only factors.

And, 15 is not a prime, since we can write it as $3 \cdot 5$. In other words, 15 has other factors besides 1 and 15 , namely 3 and 5.

To find all the prime numbers less than 100 we can use the sieve of Eratosthenes.
Here is an online interactive version: https://www.mathmammoth.com/practice/sieve-of-eratosthenes

1. Cross out 1 , as it is not considered a prime.
2. Cross out all the even numbers except 2.
3. Cross out all the multiples of 3 except 3.
4. You do not have to check multiples of 4 . Why?
5. Cross out all the multiples of 5 except 5 .
6. You do not have to check multiples of 6 . Why?
7. Cross out all the multiples of 7 except 7 .
8. You do not have to check multiples of 8 or 9 or 10 .
9. The numbers left are primes.

List the primes between 0 and 100 below:

	2	3	\neq	5	6	7	8	9	10
	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

2, 3, 5, 7, \qquad

Why do you not have to check numbers that are bigger than 10? Let's think about multiples of 11 . The following multiples of 11 have already been crossed out: $2 \cdot 11,3 \cdot 11,4 \cdot 11,5 \cdot 11,6 \cdot 11,7 \cdot 11,8 \cdot 11$ and $9 \cdot 11$. The multiples of 11 that have not been crossed out are $10 \cdot 11$ and onward... but they are not on our chart! Similarly, the multiples of 13 that are less than 100 are $2 \cdot 13,3 \cdot 13, \ldots, 7 \cdot 13$, and all of those have already been crossed out when you crossed out multiples of $2,3,5$ and 7 .

1. You learned this in grades 4 and 5 ... find all the factors of the given numbers. Use the checklist to help you keep track of which factors you have tested.

a. 54	b. 60
Check 12345678910	Check 12345678910
factors:	factors:
c. 84	d. 97
Check 12345678910	Check 12345678910
factors:	factors:

A number is...
divisible by 2 if it ends in $0,2,4,6$, or 8 .
divisible by 5 if it ends in 0 or 5 .
divisible by 10 if it ends in 0 .
divisible by 100 if it ends in " 00 ".

A number is...
divisible by 3 if the sum of its digits is divisible by 3.
divisible by 4 if the number formed from its
last two digits is divisible by 4.
divisible by 6 if it is divisible by both 2 and 3 .
divisible by 9 if the sum of its digits is divisible by 9 .

Use the various divisibility tests when building a factor tree for a composite number.

135 $/ \quad 1$ $5 \cdot ?$	$\begin{array}{r} 27 \\ 5 \begin{array}{r} 135 \\ -10 \\ 35 \\ -35 \\ 0 \end{array} \end{array}$	$\begin{array}{r} \mathbf{1 3 5} \\ 1 \quad 1 \\ \mathbf{5} \cdot 27 \\ 1 / \\ \mathbf{3} \cdot 9 \\ 1 \\ \mathbf{3} \cdot \mathbf{3} \end{array}$

We start out by noticing that 135 is divisible by 5 .
From long division, we get $135=5 \cdot 27$. The
final factorization is $135=3 \cdot 3 \cdot 3 \cdot 5$ or $3^{3} \cdot 5$.

441		
1		1
9	\cdot	$?$

$$
\begin{array}{r}
9 \lcm{441} \\
-36 \\
\hline 81 \\
-81 \\
0
\end{array}
$$

441	
$/$	1
9	$\cdot 49$
$/$	\backslash
$3 \cdot$	$/$
$3 \cdot 7$	1

Adding the digits of 441 , we get 9 , so it is divisible by 9. We divide to get $441=9 \cdot 49$.
The end result is $441=3 \cdot 3 \cdot 7 \cdot 7$ or $3^{2} \cdot 7^{2}$.
2. Find the prime factorization of these composite numbers. Use a notebook for long divisions.

Give each factorization below the factor tree.

$\begin{gathered} \text { a. }{ }^{124} \begin{array}{l} 1 \\ 2 \cdot \\ 2 \\ \hline \end{array} \quad 1 \\ 2 \end{gathered}$	$\begin{aligned} & \text { b. } 260 \\ & / / 1 \\ & 10 \cdot \\ & / \quad 1 \end{aligned}$	$\begin{aligned} & \text { c. } 96 \\ & / 1 \\ & 3 \cdot \\ & \hline \end{aligned}$
$124=$	$260=$	$96=$
d. 90	e. 165	f. 95
$90=$	$165=$	$95=$

