Laws of Exponents, Part 1

1. a. In the expression $2^{4} 2^{3}$, both powers have the same base of 2 . See if you can find a way to write this expression in a shorter form, as a single power of 2 (using only one exponent). Hint: Expand the powers as repeated multiplications..
b. Do the same with $3^{2} 3^{4}$.
c. Do the same with $a^{3} a^{9}$.
2. Are the following statements true? If not, correct them.
a. $2^{4} 2^{2}=2^{8}$
b. $2^{3} 2^{3}=4^{6}$
c. $10^{3} 10^{2}=10^{5}$
3. Expand the powers by writing out the repeated multiplications. Then simplify. Lastly, write the entire expression as a single power of 4 .
4. Simplify the expression, writing it as a single power of 5 .

$$
\frac{5^{5}}{5^{2}}=\square=
$$

5. Using the same technique as above, write the expression $\frac{x^{6}}{x^{2}}$ as a single power of x.
6. Sandra believes that $\frac{2^{5}}{2^{4}} \cdot 2=1$. Is she correct? If not, explain why not.
7. Are the following statements true? Use the table of powers of 3 to help.

Hint 1: Often estimation is sufficient to see that a statement is wrong.
Hint 2: To check the veracity of a division statement, you can also use multiplication.
a. $3^{3}+3^{4}=3^{7}$
b. $3^{3} \cdot 3^{4}=3^{7}$
d. $\frac{3^{6}}{3^{3}}=3^{3}$

$$
\begin{aligned}
& 3^{2}=9 \\
& 3^{3}=27 \\
& 3^{4}=81 \\
& 3^{5}=243 \\
& 3^{6}=729 \\
& 3^{7}=2,187 \\
& 3^{8}=6,561
\end{aligned}
$$

The first law of exponents: product of powers

When we multiply powers with the same base, we are dealing with a repeated multiplication of the same number.

For example, in $5^{4} 5^{6}$, we first multiply five by itself 4 times, and then 6 more times.

We can simply add the exponents: $5^{4} 5^{6}=5^{10}$. Five is multiplied by itself ten times. In general, $a^{n} a^{m}=a^{n+m}$ for any rational number a, and for any integer exponents n and m.
8. Write each expression as a single power (with one base and one exponent). You don't have to find the value of the expressions.

| a. $4^{3} 4^{11}=$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| b. $(-7)^{17}(-7)^{2}=$ | c. $\left(-\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{5}=$ | | |
| d. $5 \cdot 5 \cdot 5 \cdot 5^{8}=$ | e. $0.3 \cdot 0.3^{2} \cdot 0.3^{4}=$ | f. $a^{2} \cdot a \cdot a \cdot a^{12}=$ | g. $x^{m} x^{7}=$ |

9. Write each expression as a single power. You don't have to find the value of the expressions.

a. $1000 \cdot 10^{4}=$	b. $8 \cdot 2^{5}=$	c. $3^{6} \cdot 27=$	d. $4^{2} \cdot 64=$

10. Find the value of x.

a. $6^{2} 6^{x} 6^{9}=6^{21}$	b. $b^{x} b^{9}=b^{5} b^{6}$	c. $9 \cdot 3^{5}=27 \cdot 3^{x}$	d. $8 \cdot 2^{4}=32 \cdot 2^{x}$

Example 1. Rewrite $2^{9} 7^{4} 7^{2} 2^{5} \cdot 4$ as a product of powers, using as few exponents as possible.
Here, 2 is multiplied by itself nine times, and also five times, and then, 4 is actually $2 \cdot 2$. In total, 2 is multiplied by itself $9+5+2=16$ times.
And 7 is multiplied by itself, first of all four times, and then also two times - a total of 6 times.

In all, the simplified expression is $2^{16} 7^{6}$.

