Zero in Division

What do you think $6 \div 0$ would be?

We could think of sharing 6 bananas between 0 persons. But that doesn't make sense. We can't even talk about how many each one gets, because there is no one around.

We could think of making groups of 0 . How many groups would you get? Again, you would not get anywhere, you would never get those 6 bananas put into groups of 0 .

You might think that maybe $6 \div 0=0$ or that each person gets zero bananas. Check it with multiplication! You would get $0 \times 0=6$, which is not true! So $6 \div 0=0$ does not work either.

Dividing six by zero $(6 \div 0)$ is "undefined." Basically, you can't do it.

What about $\mathbf{0} \div \mathbf{0}$? Couldn't we say $0 \div 0=0$?
$0 \div 0$ is hard. The answer could be zero, but actually the answer could be any number :
Let's say that $0 \div 0=2$. Check by multiplying: $2 \times 0=0$; OK. So 2 would work.
Let's say that $0 \div 0=0$. Check by multiplying: $0 \times 0=0$; OK. So 0 would work.
Let's say that $0 \div 0=11$. Check by multiplying: $11 \times 0=0$; OK. So 11 would work.
So, we cannot find just ONE answer. We say that the answer cannot be determined.

Dividing a number by zero doesn't work.

What about zero divided by something? That is perfectly fine.
$0 \div 5=0$ "If there are zero bananas and five people, each person gets 0 bananas."

1. Divide. CROSS OUT all the problems that are impossible. Think about sharing bananas.

a. $4 \div 1=$ \qquad $4 \div 0=$	b. $14 \div 14=$ $0 \div 0=$	c. $1 \div 1=$ \qquad $7 \div 0=$ \qquad	d. $\begin{aligned} & 0 \div 5= \\ & 5 \div 5= \end{aligned}$
e. $\begin{aligned} & 0 \div 1= \\ & 0 \div 4= \end{aligned}$	f. $\begin{aligned} & 0 \div 14= \\ & 14 \div 0= \end{aligned}$	g. $\begin{aligned} & 0 \div 3= \\ & 0 \div 1= \end{aligned}$	h. $\begin{aligned} & 10 \div 10= \\ & 1 \div 1= \end{aligned}$

