Dividing Evenly into Groups

If we divide 12 bananas evenly between Joe and Sally, how many does each one get?

Both Joe and Sally each get 6 bananas.

We can write the DIVISION $12 \div 2 = 6$.

When things are divided or shared equally, we can write a division.

1. Two children are sharing. Divide the things into **two** equal groups. Write a division.

Each child gets _____.

Each child gets _____.

Each child gets _____

2. Three children are sharing. Divide the things into **three** equal groups. Write a division.

Each child gets .

Each child gets _____.

Each child gets _____.

3. Four children are sharing. Divide the things into **four** equal groups. Write a division.

ででできかきき

c.

Let's think about the division $18 \div 3$ in **TWO** different ways.

1) We have 18 carrots, and we will make *groups of 3*. How many groups do we get?

Six groups. So, $18 \div 3 = 6$.

2) We divide the 18 carrots evenly *into three groups*, like sharing them among three people. How many are there in each group?

Six. So, $18 \div 3 = 6$.

There are TWO ways to think about division:

- 1) You make groups of a certain size. How many groups do you get?
- 2) You make a certain number of groups, dividing the things equally into these groups. How many are there in each group?
- 4. Divide things evenly into groups.

a. Divide into two groups.

b. Divide into five groups.

Divide into one group.

d. Divide into four groups.

e. Make 3 groups

f. Make 1 group

g. Make 10 groups

h. Make 2 groups

5. Divide. Remember to think about the multiplication problem.

- a. $40 \div 8 =$
 - 6 ÷ 3 = ____
 - $16 \div 2 =$ _____
- **b.** $48 \div 12 =$
 - $60 \div 6 =$
 - $25 \div 5 =$
- c. $36 \div 9 =$ _____
 - $36 \div 6 =$
 - 56 ÷ 7 = _____

- **d.** $30 \div 5 =$ _____
 - 24 ÷ 3 = ____
 - 64 ÷ 8 = _____
- e. 99 ÷ 9 = _____
 - 72 ÷ 6 = _____
 - 27 ÷ 3 = _____
- **f.** $100 \div 10 =$ _____
 - $80 \div 10 =$
 - 45 ÷ 9 = _____

6. Find the unknown numbers (marked by a circle or ?).

- **a.** $16 \div 4 = ?$
- ? = _____
- **b.** $21 \div ? = 3$
 - ? =
- c. $42 \div ? = 6$
 - ?=____
- **d.** $? \div 5 = 12$
 - ? =

- e. $) \div 4 = 7$
 - ____
- **f.** $54 \div \bigcirc = 6$
 - **=**____
- g. $144 \div 12 = \bigcirc$
 - =____
- **h.** $\bigcirc \div 11 = 11$
 - **=**____
- 7. Solve. Write a division or a multiplication for each problem.

The box is where you will write either \times or \div .

a. Amanda, Jill, and Bill shared evenly 18 marbles in a game.

How many marbles did each one get?

- =
- b. Four children played marbles.Each one had 7 marbles.How many marbles were there in total?

___=_

c. Ashley cut a 24-inch long string into 6 equal pieces. How long was each piece of string?

____=__

d. Mom bought 24 hairpins and divided them evenly among her 3 daughters. How many hairpins did each girl get?

8. a. Write or make a *division* story problem about 20 apples and some horses.

b. Write or make a *division* story problem about 24 toy cars and some children.

9. Fill in the division tables!

a. Division table of six	b. Division table of seven	c. Division table of eight
6 ÷ 6 =	7 ÷ 7 =	8 ÷ 8 =
12 ÷ 6 =	14 ÷ 7 =	16 ÷ 8 =
÷ 6 =	÷7=	÷ 8 =
÷6=	÷7=	÷ 8 =
÷6=	÷7=	÷ 8 =
÷ 6 =	÷7=	÷ 8 =
÷6=	÷7=	÷ 8 =
÷6=	÷7=	÷ 8 =
÷ 6 =	÷7=	÷ 8 =
÷ 6 =	÷7=	÷ 8 =
÷6=	÷7=	÷8=
÷6=	÷7=	÷ 8 =

Notice the patterns in these tables! How are they similar to the multiplication tables?